Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification.
نویسندگان
چکیده
Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.
منابع مشابه
Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro.
Cisplatin (cisPt), Pt(NH(3))(2)Cl(2), is a cancer drug believed to kill cells via DNA binding and damage. Recent work has implied that the cellular copper (Cu) transport machinery may be involved in cisPt cell export and drug resistance. Normally, the Cu chaperone Atox1 binds Cu(I) via two cysteines and delivers the metal to metal-binding domains of ATP7B; the ATP7B domains then transfer the me...
متن کاملDeterminants for Simultaneous Binding of Copper and Platinum to Human Chaperone Atox1: Hitchhiking not Hijacking
Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/...
متن کاملInteraction Between Anticancer Drug Cisplatin and Copper Chaperone Atox1 in Human Melanoma Cells
Postprint This is the accepted version of a paper published in Protein peptide letters. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Interaction between anticancer drug Cisplatin and copper chaperone Atox1 in human melanoma cells. Protein peptide letters Access to the published version may require subscription. Cisplatin (Ci...
متن کاملCopper binding modulates the platination of human copper chaperone Atox1 by antitumor trans-platinum complexes.
The transport system of platinum-based anticancer agents is crucial for drug sensitivity. Increasing evidence indicates that the copper transport system is also involved in the cellular influx and efflux of platinum drugs. The copper chaperone Atox1 has been shown to bind to cisplatin in vitro and in cells. Previous results reveal that copper binding promotes the reaction between Atox1 and cisp...
متن کاملInteraction of cisplatin and analogue Pt(en)Cl2 with the copper metallo-chaperone Atox1.
The human metallo-chaperone protein Atox1 features a high affinity Cu(I) binding site Cys(12)GlyGlyCys(15) (KD = 10(-17.4) M at pH 7.0) and delivers copper to the trans-Golgi network (TGN). Atox1 may participate in the metabolism of the drug cis-Pt(NH3)2Cl2 (cisplatin), either as a component of its delivery to the nucleus or of its loss via transport to the TGN and beyond. The species of stoich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 454 1 شماره
صفحات -
تاریخ انتشار 2013